
DANE

Jun 23, 2023

Contents:

1 Introduction 1
1.1 Usage . 1
1.2 Configuration . 2
1.3 Task states . 3

2 Installation 5

3 Developer API 7
3.1 Document . 7
3.2 Task . 8
3.3 Result . 10
3.4 Handlers . 10
3.5 Base classes . 14
3.6 Utils . 15
3.7 Errors and exceptions . 15

4 Examples 17
4.1 Examples . 17
4.2 An example worker . 17

5 Indices and tables 21

Python Module Index 23

Index 25

i

ii

CHAPTER 1

Introduction

The Distributed Annotation ‘n’ Enrichment (DANE) system handles compute task assignment and file storage for the
automatic annotation of content.

The use-case for which DANE was designed centres around the issue that the compute resources, and the collection
of source media are not on the same device. Due to limited resources or policy choices it might not be possible
or desirable to bulk transfer all source media to the compute resources, alternatively the source collection might be
continuously growing or require on-demand processing.

In all cases, the computation depends on several stages which can all bottleneck (i.e., introduce delays) to the overall
process. By subdividing the work into individual tasks, which can be scheduled separately DANE is capable of more
optimally using the available resources. For example, in the case of intensive video analysis of a large archive, it is not
feasible to move the entire video archive in a single pass to the compute server. By designing specific tasks for data
transfer between servers, analysis, and post-hoc clean-up, DANE can be used to schedule these tasks such that they
can be performed in parallel.

1.1 Usage

In essence the DANE ecosystem consists of three parts, (1) The back-end (DANE-server), (2) The compute workers,
(3) A client that submits the tasks.

The format of the communication between these components follows the document specification format which details
the source material to process, the task specification format that details the tasks to be performed, and the result
specification with information on task results.

1

https://github.com/CLARIAH/DANE-server/

DANE

Once a document is submitted to the DANE-server tasks can be assigned to, which in turn will be assigned to a
worker. As such, a worker relies on a DANE-server instance for its task assignment. To use DANE, one thus needs all
three parts, namely an instance of DANE-server, some compute workers, and some client or process to submit tasks.
Examples of workers and clients can be found here, whereas DANE-server is documented in its repository.

1.2 Configuration

The configuration of DANE components is done through the DANE.config module, which builds on top of YACS.
The DANE.config specifies some default options, with default values, but it is mainly meant to be extended with
component specific options. YACS makes it possible to specify configurations in a yaml format, and in code, here is a
yaml example with some of the default config options:

DANE:
HOST: '0.0.0.0'
PORT: 5500
API_URL: 'http://localhost:5500/DANE/'

RABBITMQ:
HOST: 'localhost'
PORT: 5672
EXCHANGE: 'DANE-exchange'

Here, we have specified that the host that the DANE server listens on is 0.0.0.0 with port 5500, additionally, the url at
which the API is reachable is given by the API_URL field. Similarly, we specify a number of options for the RabbitMQ
queueing system.

To deviate from the default options there are two options, 1) the system-wide DANE config file, and 2) the component
specific config file. To best illustrate how these are used we will first demonstrate how to get access to the config. The
DANE.config module has an cfg object, which is a YACS config node, which we can get access to by importing it as
follows:

from DANE.config import cfg

We now have access to the config, and then we can pass it for example to a worker (as shown in the Examples):

fsw = filesize_worker(cfg)

or we can retrieve specific values from the config.

2 Chapter 1. Introduction

https://github.com/CLARIAH/DANE/blob/master/DANE/config.py
https://github.com/rbgirshick/yacs

DANE

print('The DANE API is available at', cfg.DANE.API_URL)

During the loading of the config module, the default configuration will be constructed. Once the default config is setup
it will, in order, search for a system-wide config, a component specific ‘base_config’, and a runtime specific config. By
loading these in this order, the most specific options will be used (i.e., system-wide overrides defaults, and component
specific overrides both the system-wide and defaults settings). DANE.config will look for the system-wide config at
$HOME/.dane/config.yml (or $DANE_HOME/config.yml if available).

For the component specific config DANE.config looks in the directory of file that is importing it for a base_config.yml,
thus if the module which uses DANE.config is at $PYTHONLIB/site-packages/mymodule then it will look in that same
directory for the base_config.yml.

Lastly, the config module will look for the component specific config (config.yml) in the current working directory.
For a worker, simply consist of a directory of code, and which is not installed, the directory structure might thus look
like this:

filesize_worker/
filesize_worker.py
base_config.yml
config.yml

A nice feature of YACS is that it is not necessary to overwrite all default configuration options, we only need to specific
the ones we would like to change or add. For the filesize_worker, the base_config.yml might thus look like this:

FILESIZE_WORKER:
UNIT: 'KB'
PRECISION: 2

Defining new (non-functional) options for the worker, namely the units in which the filesize should be expressed, and
the number of decimals we want shown in the output. It also gives a default value for this option. Subsequently, we can
define an instance specific config.yml (which shouldn’t be committed to GIT), which contains the following options.

DANE:
API_URL: 'http://somehost.ext:5500/DANE/'

FILESIZE_WORKER:
UNIT: 'MB'

This indicates that the API can be found at a different URL than the default one, and that we want the file size expressed
in MB, for all other config options we rely on the previously defined defaults.

However, in some cases it might be necessary that the user always overwrites the base config, for instance when it
contains paths that might be environment specific. In this case we can require that a config.yml is found by including
the following in the base config:

CONFIG:
REQUIRED: True

If no config.yml is found but the base config has indicated its required the config module will raise a
DANE.errors.ConfigRequiredError.

1.3 Task states

Once a DANE worker has completed a task, or task progression has been interrupted due to an error, it should return a
JSON object consisting of a state and a message. The message is expected to be an informative, and brief, indication
of what went wrong, this message is not intended for automatic processing.

1.3. Task states 3

DANE

The state returned by a worker is used for automatic processing in DANE, based on this state it is determined whether
a task is completed, in progress, requires retrying, or requires manual intervention. The state is one of the numerical
HTTP Status codes with the aim of trying to adhere to the semantics of what the status code represents. For example,
the state 200 indicates that the task has been successfully handled, whereas 102 indicates it is still in progress. Below
we provide an overview of all used state codes and how they are handled by DANE.

1.3.1 State overview

• 102: Task has been sent to a queue, it might be being worked on or held in queue.

• 200: Task completed successfully.

• 201: Task is registered, but has not been acted upon.

• 205: Task reset state, typically after manual intervention

• 400: Malformed request, typically the document or task description.

• 403: Access denied to underlying source material.

• 404: Underlying source material not found.

• 412: Task has a dependency which has not completed yet.

• 422: If a task cannot be routed to a queue, this state is returned.

• 500: Error occurred during processing, details should be given in message.

• 502: Worker received invalid or partial input.

• 503: Worker received an error response from a remote service it depends on.

Tasks with state 205, 412, 502, or 503, can be retried automatically. Whereas states 400, 403, 404, 422, and 500
require manual intervention. Once a manual intervention has taken place the task can be resumed.

4 Chapter 1. Introduction

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

CHAPTER 2

Installation

DANE is available through PyPi: pypi.org/project/DANE <https://pypi.org/project/DANE/>. To install simply run

pip install DANE

In order to use DANE it is, in most cases, necessary to specify a configuration. How the DANE configuration works
is specified Here.

5

DANE

6 Chapter 2. Installation

CHAPTER 3

Developer API

API stuff

3.1 Document

class DANE.Document(target, creator, api=None, _id=None, created_at=None, updated_at=None)
This is a class representation of a document in DANE, it holds both data and some logic.

Parameters

• target (dict) – Dict containing id, url, and type keys to described the target document.

• creator (dict) – Dict containing id, and type keys to describe the document
owner/creator.

• api (base_classes.base_handler, optional) – Reference to a
class:base_classes.base_handler which is used to communicate with the server.

• _id (int, optional) – ID of the document, assigned by DANE-server

• created_at – Creation date

• updated_at – Last modified date

delete()
Delete this document. Requires an API to be set.

static from_json(json_str)
Constructs a DANE.Document instance from a JSON string

Parameters json_str (str or dict) – Serialised DANE.Document

Returns JSON string of the document

Return type DANE.Document

7

DANE

getAssignedTasks(task_key=None)
Retrieve tasks assigned to this document. Accepts an optional task_key to filter for a specific type of tasks.
Requires an API to be set.

Parameters task_key (string, optional) – Key of task type to filter for

Returns list of dicts with task keys and ids.

register()
Register this document in DANE, this will assign an _id to the document. Requires an API to be set.

Returns self

set_api(api)
Set the API for the document

Parameters api (base_classes.base_handler, optional) – Reference to a
base_classes.base_handler which is used to communicate with the database, and
queueing system.

Returns self

to_json(indent=None)
Returns this document serialised as JSON, excluding the API reference.

Returns JSON string of the document

Return type str

3.2 Task

class DANE.Task(key, priority=1, _id=None, api=None, state=None, msg=None, created_at=None, up-
dated_at=None, **kwargs)

Class representation of a task, contains task information and has logic for interacting with DANE-server through
a base_classes.base_handler

Parameters

• key (str) – Key of the task, should match a binding key of a worker

• priority (int) – Priority to give to this task in queue. Defautls to 1.

• _id (int, optional) – id assigned by DANE-server to this task

• api (base_classes.base_handler, optional) – Reference to a base_classes.
base_handler which is used to communicate with the database, and queueing system.

• state (int, optional) – Status code representing task state

• msg (str, optional) – Textual message accompanying the state

• created_at – Creation date

• updated_at – Last modified date

• **kwargs – Arbitrary keyword arguments. Will be stored in task.args

apply(fn)
Applies fn to self

Parameters fn (function) – Function handle in the form fn(task)

Returns self

8 Chapter 3. Developer API

DANE

assign(document_id)
Assign a task to a document, this will set an _id for the task and run it. Requires an API to be set.

Parameters document_id – id of document to assign this task to.

Returns self

assignMany(document_ids)
Assign this task to multiple documents and run it. Requires an API to be set.

delete()
Delete this task, requires it to be registered

Returns bool

static from_json(task_str)
Constructs a DANE.Task instance from a JSON string

Parameters task_str (str or dict) – Serialised DANE.Task

Returns An initialised Task

Return type DANE.Task

isDone()
Check if this task has been completed.

A task is completed if it’s state equals 200. This will consult the API if the state isn’t set.

Returns Task doneness

Return type bool

refresh()
Retrieves the latest information for task state and msg which might have changed their values since the
creation of this task. Requires an API to be set

Returns self

reset()
Reset the task state to 201

This can be used to force tasks to re-run after a preceding task has completed. Typically, the preceding
task will be retried with force=True.

Returns self

retry(force=False)
Try to run this task again. Unlike run() this will attempt to run even after an error state was encountered.

Parameters force (bool, optional) – Force task to rerun regardless of previous state

Returns self

run()
Run this task, requires it to be registered

Returns self

set_api(api)
Set the API for this task

Parameters api (base_classes.base_handler, optional) – Reference to a
base_classes.base_handler which is used to communicate with the database, and
queueing system.

Returns self

3.2. Task 9

DANE

state()
Get task state of this task.

Returns Task state

Return type int

to_json(indent=None)
Returns this task serialised as JSON

Returns JSON serialisation of the task

Return type str

3.3 Result

class DANE.Result(generator, payload={}, _id=None, api=None)
Class representation of a analysis result, containing the outcome and logic for interacting with DANE-server
through a base_classes.base_handler

Parameters

• generator (dict) – Details of analysis that generated this result, requires id, name, type,
and homepage fields.

• payload (dict) – The actual result(s) to be stored

• _id (int, optional) – id assigned by DANE-server to this task

delete()
Delete this result.

static from_json(json_str)
Constructs a DANE.Result instance from a JSON string

Parameters task_str (str or dict) – Serialised DANE.Result

Returns An initialised Result

Return type DANE.Result

save(task_id)
Save this result, this will set an _id for the result

Parameters task_id – id of the task that generated this result

Returns self

to_json(indent=None)
Returns this result serialised as JSON

Returns JSON string of the result

Return type str

3.4 Handlers

class DANE.handlers.ESHandler(config, queue=None)

10 Chapter 3. Developer API

DANE

assignTask(task, document_id)
Assign a task to a document and run it.

Parameters

• task (DANE.Task) – the task to assign

• document_id (int) – id of the document this task belongs to

Returns task_id

Return type int

assignTaskToMany(task, document_ids)
Assign a task to a document and run it.

Parameters

• task (DANE.Task) – the task to assign

• document_id ([int]) – list of ids of the documents to assign this to

Returns task_ids

Return type [int]

callback(task_id, response)
Function that is called once a task gives back a response.

This updates the state and response of the task in the database, and then tries to run the other tasks assigned
to the document.

Parameters

• task_id (int) – The id of a task

• response (dict) – Task response, should contain at least the state and a message

deleteDocument(document)
Delete a document and its underlying tasks from the database

Parameters document (DANE.Document) – The document

deleteResult(result)
Delete a result

Parameters result (DANE.Result) – The result to delete

Returns bool

deleteTask(task)
Delete a task.

Parameters task (DANE.Task) – the task to delete

Returns bool

documentFromDocumentId(document_id)
Construct and return a DANE.Document given a document_id

Parameters document_id (int) – The id for the document

Returns The document

Return type DANE.Document

documentFromTaskId(task_id)
Construct and return a DANE.Document given a task_id

3.4. Handlers 11

DANE

Parameters task_id (int) – The id of a task

Returns The document

Return type DANE.Document

getAssignedTasks(document_id, task_key=None)
Retrieve tasks assigned to a document. Accepts an optional task_key to filter for a specific type of tasks.

Parameters

• document_id – document to of interest

• task_key (string, optional) – Key of task type to filter for

Returns list of dicts with task ids, keys, and states.

getTaskKey(task_id)
Retrieve task_key for a given task_id

Parameters task_id (int) – id of the task

Returns task_key

Return type str

getTaskState(task_id)
Retrieve state for a given task_id

Parameters task_id (int) – id of the task

Returns task_state

Return type int

getUnfinished(only_runnable=False)
Returns tasks which are not finished, i.e., tasks that dont have state 200

Parameters only_runnable – Return only tasks that can be run()

Returns ids of found tasks

Return type dict

registerDocument(document)
Register a document in the database

Parameters document (DANE.Document) – The document

Returns document_id

Return type int

registerDocuments(documents)
Register list of documents in the database

Parameters document (DANE.Document) – The document

Returns two lists with successfully and failed documents, as tuple

registerResult(result, task_id)
Save a result for a task

Parameters

• result (DANE.Result) – The result

• task_id – id of the task that generated this result

12 Chapter 3. Developer API

DANE

Returns self

resultFromResultId(result_id)
Construct and return a DANE.Result given a result_id

Parameters result_id (int) – The id of a result

Returns The result

Return type DANE.Result

retry(task_id, force=False)
Retry the task with this id.

Attempts to run a task which previously might have crashed. Defaults to skipping tasks with state 200, or
102, unless Force is specified, then it should rerun regardless of previous state.

Parameters

• task_id (int) – The id of a task

• force (bool, optional) – Force task to rerun regardless of previous state

run(task_id)
Run the task with this id, and change its task state to 102.

Running a task involves submitting it to a queue, so results might only be available much later. Expects a
task to have state 201, and it may retry tasks with state 502 or 503.

Parameters task_id (int) – The id of a task

search(target_id, creator_id, page=1)
Returns documents matching target_id and creator_id

Parameters

• target_id – The id of the target

• creator_id – The id of the creator

Returns list of found documents

searchResult(document_id, task_key)
Search for a result of a task with task_key applied to a specific document

Parameters

• document_id – id of the document the task should be applied to

• task_key – key of the task that was applied

Returns List of initialised DANE.Result

taskFromTaskId(task_id)
Retrieve task for a given task_id

Parameters task_id (int) – id of the task

Returns the task, or error if it doesnt exist

Return type DANE.Task

updateTaskState(task_id, state, message)
Update the state, message, and last updated of a task.

Parameters

• task_id (int, required) – The id of a task

3.4. Handlers 13

DANE

• state (int, required) – The new task state

• message (string, required) – The new task message

3.5 Base classes

class DANE.base_classes.base_worker(queue, binding_key, config, depends_on=[],
auto_connect=True, no_api=False)

Abstract base class for a worker.

This class contains most of the logic of dealing with DANE-server, classes (workers) inheriting from this class
only need to specific the callback method.

Parameters

• queue (str) – Name of the queue for this worker

• binding_key (str or list) – A string following the format as explained here: https:
//www.rabbitmq.com/tutorials/tutorial-five-python.html or a list of such strings

• config (dict) – Config settings of the worker

• depends_on (list, optional) – List of task_keys that need to have been performed
on the document before this task can be run

• auto_connect (bool, optional) – Connect to AMQ on init, set to false to debug
worker as a standalone class.

• no_api (bool, optional) – Disable ESHandler, mainly for debugging.

callback(task, document)
Function containing the core functionality that is specific to a worker.

Parameters

• task (DANE.Task) – Task to be executed

• document (DANE.Document) – Document the task is applied to

Returns Task response with the message, state, and optional additional response information

Return type dict

connect()
Connect the worker to the AMQ. Called by init if autoconnecting.

getDirs(document)
This function returns the TEMP and OUT directories for this job creating them if they do not yet exist
output should be stored in response[‘SHARED’]

Parameters job (DANE.Job) – The job

Returns Dict with keys TEMP_FOLDER and OUT_FOLDER

Return type dict

run()
Start listening for tasks to be executed.

stop()
Stop listening for tasks to be executed.

14 Chapter 3. Developer API

https://www.rabbitmq.com/tutorials/tutorial-five-python.html
https://www.rabbitmq.com/tutorials/tutorial-five-python.html

DANE

3.6 Utils

3.7 Errors and exceptions

exception DANE.errors.APIRegistrationError
Raised when registering the API fails.

exception DANE.errors.ConfigRequiredError
Error to indicate that the base_config.yml is declared abstract, and that it requires a config.yml.

exception DANE.errors.DANException
Wrapper for DANE exception.

exception DANE.errors.DocumentExistsError
Raised when document does (not) exists.

exception DANE.errors.MissingEndpointError
Raised when an action fails due to lack of API.

exception DANE.errors.RefuseJobException
Exception for workers to throw when they want to refuse a job at this point in time.

This will result in a nack (no ack) being sent back to the queue, causing the job to be requeued (at the or close
to the head of the queue).

exception DANE.errors.ResourceConnectionError
Raised when a component cant connect to a resource it depends on.

Used for catching resource specific errors, and wrapping them in a soft blanket of custom error handling.

exception DANE.errors.ResultExistsError
Raised when result does (not) exists.

exception DANE.errors.TaskAssignedError
Raised when task is already/not yet assigned.

exception DANE.errors.TaskExistsError
Raised when task does (not) exists.

exception DANE.errors.UnregisteredError
Raised when DANE object does not have an _id.

3.6. Utils 15

DANE

16 Chapter 3. Developer API

CHAPTER 4

Examples

All code examples can be found here.

4.1 Examples

To explore the options of DANE we’ve create a jupyter notebook for you to experiment with creating a DANE docu-
ments and tasks yourself.

https://github.com/CLARIAH/DANE/blob/master/examples/dane_example.ipynb

Instead of performing any interaction with a DANE server, the examples work with a DummyHandler which imple-
ments all the required handler functionality. The DummyHandler simply stores all information in variables, as such
there is no persistence of the data, but it does allow for experimenting with DANE.

4.2 An example worker

DANE workers have been designed such that very little boilerplate code is necessary. Nonetheless, some boilerplate
is required to ensure we can rely on the logic defined in the DANE.base_classes.base_worker.

In this example we will break down the code on how to construct a worker which returns the file size of a source file.

We’ll start by defining a new class, which we have appropriately named filesize_worker. We ensure that it inherits
from DANE.base_classes.base_worker, and then we’re ready to start adding logic.

class filesize_worker(DANE.base_classes.base_worker):
__queue_name = 'filesize_queue'
__binding_key = '#.FILESIZE'

def __init__(self, config):
super().__init__(queue=self.__queue_name,

binding_key=self.__binding_key, config=config)

17

https://github.com/CLARIAH/DANE/tree/master/examples
https://github.com/CLARIAH/DANE/blob/master/examples/dane_example.ipynb
https://github.com/CLARIAH/DANE/blob/master/examples/dummyhandler.py
https://github.com/CLARIAH/DANE/blob/master/examples/filesize_worker.py

DANE

First, we define two class constants with the name of the queue the worker should use, and the binding key. We want
all workers of the same type to share the same queue name, so if we start multiple workers they can divide the work.

The binding key follows the pattern <document type>.<task key>, where the document type can be * for any
type of source material, or optionally we can build a worker which only processes a specific type of document. The a
task object uses a key to specify that we mean this type of worker.

In theory, multiple different workers can have the same key, while having a different queue name. This could be use
for example to do logging. However, this can be risky in that if the queue for the intended task is not initialised, the
task might never be assigned to the correct queue.

Up next is the __init__ function. In order to properly set up the worker we need to call the init of the base_worker
class, provide the queue name, binding key, and the config parameters to connect to the RabbitMQ instance. If the
worker requires any set up, the init can be extended to include this as well.

Besides any setting up logic which might be in the init, the majority of worker specific logic is contained in the
callback. This function is called whenever a new task is read from the queue.

The base_worker contains all the code for interacting with the queue, so in the callback we can focus on actually doing
the work.

def callback(self, task, doc):
if exists(doc.target['url']):

fs = getsize(doc.target['url'])

return json.dumps({'state': 200,
'message': 'Success')

else:
return json.dumps({'state': 404,

'message': 'No file found at source_url'})

The callback receives a task and a document. For the file size worker we are only interested in the source material. We
assume that the source material is a local file, so we can rely on functionality from os.path.

The first step is to check if the source material actually exists. In general, any input verification and validity checking is
relegated to the workers themselves. If the file exists, we retrieve its size and return a JSON serialised dict containing
the success state (200), a message detailing that we have succeeded If we want to store the retrieved file size, or make
it available to later tasks we can store it in a DANE.Result.

For the else clause, we can simply return a 404 state, and a descriptive message to indicate that the source material
was not found. In all cases a task must return a state and a message. For more on states see Task states.

Lastly, we need some code to start the worker.

if __name__ == '__main__':

fsw = filesize_worker(cfg)
print(' # Initialising worker. Ctrl+C to exit')

try:
fsw.run()

except KeyboardInterrupt:
fsw.stop()

To start a worker, we first initialise it with a config file. By default a worker only needs access to the ElasticSearch
and RabbitMQ details provided by the DANE.config, such that it can store and read data, as well as set up a queue and
listen to work to perform. However, this can be extended with worker specific configuration options. More details on
how to work with the configuration can be found in the Usage guide.

18 Chapter 4. Examples

DANE

After having initialised the worker we can simply call the DANE.base_classes.base_worker.run()method
to start listening for work. As this starts a blocking process, we have added a way in which we can (slightly) more
elegantly interrupt it. Namely, once Ctrl+C is pressed, this will trigger the KeyBoardInterrupt exception, which we
catch with the try-except block, and then we call the stop method.

To test this worker it is necessary to have access to a RabbitMQ instance. However, to simulate task requests we have
constructed a generator which can be run without having to set up the other components of a DANE server.

4.2. An example worker 19

https://www.rabbitmq.com/
https://github.com/CLARIAH/DANE/blob/master/examples/filesize_request_generator.py

DANE

20 Chapter 4. Examples

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

21

DANE

22 Chapter 5. Indices and tables

Python Module Index

d
DANE.base_classes, 14
DANE.document, 7
DANE.errors, 15
DANE.handlers, 10
DANE.results, 10
DANE.tasks, 8
DANE.utils, 15

23

DANE

24 Python Module Index

Index

A
APIRegistrationError, 15
apply() (DANE.Task method), 8
assign() (DANE.Task method), 8
assignMany() (DANE.Task method), 9
assignTask() (DANE.handlers.ESHandler method),

10
assignTaskToMany() (DANE.handlers.ESHandler

method), 11

B
base_worker (class in DANE.base_classes), 14

C
callback() (DANE.base_classes.base_worker

method), 14
callback() (DANE.handlers.ESHandler method), 11
ConfigRequiredError, 15
connect() (DANE.base_classes.base_worker

method), 14

D
DANE.base_classes (module), 14
DANE.document (module), 7
DANE.errors (module), 15
DANE.handlers (module), 10
DANE.results (module), 10
DANE.tasks (module), 8
DANE.utils (module), 15
DANException, 15
delete() (DANE.Document method), 7
delete() (DANE.Result method), 10
delete() (DANE.Task method), 9
deleteDocument() (DANE.handlers.ESHandler

method), 11
deleteResult() (DANE.handlers.ESHandler

method), 11
deleteTask() (DANE.handlers.ESHandler method),

11

Document (class in DANE), 7
DocumentExistsError, 15
documentFromDocumentId()

(DANE.handlers.ESHandler method), 11
documentFromTaskId()

(DANE.handlers.ESHandler method), 11

E
ESHandler (class in DANE.handlers), 10

F
from_json() (DANE.Document static method), 7
from_json() (DANE.Result static method), 10
from_json() (DANE.Task static method), 9

G
getAssignedTasks() (DANE.Document method), 7
getAssignedTasks() (DANE.handlers.ESHandler

method), 12
getDirs() (DANE.base_classes.base_worker

method), 14
getTaskKey() (DANE.handlers.ESHandler method),

12
getTaskState() (DANE.handlers.ESHandler

method), 12
getUnfinished() (DANE.handlers.ESHandler

method), 12

I
isDone() (DANE.Task method), 9

M
MissingEndpointError, 15

R
refresh() (DANE.Task method), 9
RefuseJobException, 15
register() (DANE.Document method), 8

25

DANE

registerDocument() (DANE.handlers.ESHandler
method), 12

registerDocuments() (DANE.handlers.ESHandler
method), 12

registerResult() (DANE.handlers.ESHandler
method), 12

reset() (DANE.Task method), 9
ResourceConnectionError, 15
Result (class in DANE), 10
ResultExistsError, 15
resultFromResultId()

(DANE.handlers.ESHandler method), 13
retry() (DANE.handlers.ESHandler method), 13
retry() (DANE.Task method), 9
run() (DANE.base_classes.base_worker method), 14
run() (DANE.handlers.ESHandler method), 13
run() (DANE.Task method), 9

S
save() (DANE.Result method), 10
search() (DANE.handlers.ESHandler method), 13
searchResult() (DANE.handlers.ESHandler

method), 13
set_api() (DANE.Document method), 8
set_api() (DANE.Task method), 9
state() (DANE.Task method), 9
stop() (DANE.base_classes.base_worker method), 14

T
Task (class in DANE), 8
TaskAssignedError, 15
TaskExistsError, 15
taskFromTaskId() (DANE.handlers.ESHandler

method), 13
to_json() (DANE.Document method), 8
to_json() (DANE.Result method), 10
to_json() (DANE.Task method), 10

U
UnregisteredError, 15
updateTaskState() (DANE.handlers.ESHandler

method), 13

26 Index

	Introduction
	Usage
	Configuration
	Task states

	Installation
	Developer API
	Document
	Task
	Result
	Handlers
	Base classes
	Utils
	Errors and exceptions

	Examples
	Examples
	An example worker

	Indices and tables
	Python Module Index
	Index

